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Abstract. We present results for the mnduaivity of lateral-surface superlattices with no 
magnetic field. For smooth potentials the results show three regimes: tunnelling beween isolated 
states at low energies; strong scattering at intermediate energies; and weak scattering once the 
Fermi energy is above the top of the potential. A hard-wall potential is used to investigate 
he smng-scaltering regime. At low energies the average conductivity is proportional to the 
energy, and we present a simple model which explains the average band smcture in terms of 
lhe probability of reflection of a classical particle by a unit cell. 

1. Introduction 

Experiments on lateral-surface superlattices [1.2] are approaching the point where effects 
due to interactions between the period of the lattice, the Fenni wavelength, and the magnetic 
length should be apparent. So far experiments on superlattices with periods of around 
300 nm have shown mostly semi-classical effects [3] from the interaction of the periods 
of the cyclotron radius and the superlanice potential with both onedimensional potentials 
[ e ]  and twodimensional potentials [9-121, although some effects have required the effect 
of the density of states on the scattering time to be taken into account 113-151. 

For smaller periods it is hoped that purely quantum mechanical effects, seen in single 
systems such as point contacts [ 16,171, shouldbe apparent. In particular, aperiodic potential 
is expected to introduce band gaps, and lower the conductivity [l8]. 

We have recently described a technique for calculating the conductivity of lateral-surface 
superlattices with general potentials, and with magnetic fields [ 191. We present results in this 
paper for systems with no magnetic field. For realistic, smooth, potentials the conductivity 
shows a rapid transition from strong to weak scattering as the Fenni energy rises above the 
maximum of the potential. Results are then shown for a hard-wall potential to investigate 
the strong scattering regime, where the conductivity is reduced from the conductivity with 
no superlattice potential. We explain the magnitude of the conductivity in terms of the 
average band structure estimated from the statistics of classical paths within a single unit 
cell. 

2. Single-electron model 

We adopt the simplest model for conductivity of the electrons at the interface of a 
GaAs/AIGaAs heterostmcture. and assume a fixed periodic potential and scattering time. 
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We calculate the bulk longitudinal conductivity using the formula given by Degani and 
Leburton [ 181: 

R B S Oakeshott and A MacKinnon 

where r is the transport scattering time, U, is the group velocity of the mode in the x 
direction, A is the area of the system, and f is the Fermi-Dirac distribution function. We 
assume in this paper a value of r = 38 ps. equivalent to a mobility of 100 mz V-’ s-’. 
Note that the only effect o f t  within this formula is to scale the conductivity. 

We have discussed in a previous paper 1191 the assumptions which we are making in 
using this model, and shown how one can efficiently evaluate the conductivity and density 
of states using a recursive Green-function technique. 

3. Results 

Since the electrons are separated from the gates, the short-range components of the 
potential are damped [20] and a potential with only a few Fourier components is adequate. 
We therefore use a smooth potential 

V(x, y) = ~Vm[cos(2rx/a) + cos(ky/a) - 0.5 cos(2zx/a) cos(ky/a) + 2.51 (2) 

as considered recently by Smoliner er a1 [21]. Other smooth potentials give similar results. 
The amplitude of the potential can be up to of the order of IO meV, and comparable with 
the Fermi energy. There are two important scales to the potential: Vraddk such that for 
Fermi energies below V-ddle particles are classically trapped: and the maximum height of 
the potential V,=. Figure 1 shows the conductivity for different values of V,,, for a lattice 
period of 100 nm. The results show a rapid transition to weak scattering as the Fermi energy 
is increased. 

This general behaviour is what we would expect semi-classically: that is, for point 
particles following Newton’s equation of motion between scattering events. Below Vsaddlc 
the conductivity is classically zero. Quantum mechanics alters the classical picture below 
V-ddle by quantizing the states in an isolated dot, which are then broadened by tunnelling to 
form bands. The results show however that the conductivity due to the tunnelling is small. 
Note that our results will not be physically accurate in this limit, since disorder will localize 
states in the narrow bands. For a recent review of localization effects see the book by Ulloa 
eta1 [22]. 

For large energies the potential will only weakly scatter particles within a time t, and 
the conductivity will be determined by the cut-off time T .  Since U (x we expect 

U (x ( E  - V ) .  (3) 

We have also calculated the semiclassical conductivity by evaluating D = (x’) /2r for 
classical paths with energy E and a mean time r,  and assuming the density of states of the 
unperturbed electron gas. Figure 2 shows the simple estimate of equation (3). together with 
the quantum-mechanical and semi-classical results. The quantum-mechanical and semi- 
classical results for the conductivity are similar, and are given approximately by the simple 
estimate. The agreement between these results implies that we are looking at short times 
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Figure 1. Conductivity for smooth potental with Figure 2. Comparison of conductivity for a smwth 
100 nm lattice period and different values of pelk-peak potential (curve Q) with the semiclassical conductivily 
potential V,,. The origin of the conductivity 11% been (cuve C) and with a simple estimate of a = ad1 - 
shifted for clarity. The inset shows the fomr of the ( V )  / E )  (curve S). V,, = 15 meV and a = 100 nm. 
potential. The small peak at EF E 9 meV is a quantum- 

mechanical feature: classically parlicles are unable to 
move betwen different unit cells at this energy. 

compared with the time-scale on which the chaotic classical motion in the periodic potential 
produces diffusion (231, whereas the quantum-mechanical motion gives a constant group 
velocity. (The conductivity is smaller than equation (3) predicts because strictly we should 

be considering the average velocity (U) = (Jpul l/u) , since the time to travel a given 
distance is given by the integral akog the path of I / u .  For Fermi energies above the 
maximum of the potential we expec: the classical motion to show diffusion rather than 
anomalous diffusion [23] so that for lzrge r the conductivity is determined classically by the 
periodic potential, whereas quantum riechanically the conductivity increases proportionally 
to r unless another scattering mechanism is intmduced) 

Quantum mechanically we can understand the high-energy regime in a nearly-&- 
electron picture, where reflection at band edges reduces the group velocity. Within first- 
order perturbation theory, we expect !he periodic potential to open a band-gap pro ortional 
to Vk at the band edges. Since we expect V, to fall off with k, and since k a P E ,  so that 
band-gaps are more widely spaced i i i  energy at higher energies, the conductivity will be 
little affected by the potential for EF >> Vmx. Whilst some features are apparent even at 
relatively high energies, their size is much smaller than the amplitude of the potential. 

3.1. Effect of lattice period and ihermal broadening 

Classically the conductivity should, nzglecting any effects from the finite scattering time r,  
be independent of the periodicity for a fixed potential amplitude. Quantum mechanically, 
as the lattice spacing is increased, the Brillouin zone becomes smaller, and the features due 
to interference effects are moved closer together in energy: likewise the features at a given 
energy correspond to higher orders in llerturbation theory, and so are weaker. Figure 3 shows 
the conductivity for a fixed amplitud: of potential, and different lattice periods displaying 
these features. 

As the temperature is increaseSthe fine structure will be obscured by thermal 
broadening. Figure 4 shows the effeci of increasing the temperature for a period of 100 nm 
and with VO = 5 meV. 

- 1  
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Figure 3. Conductivity for a smooth potential wilh 
10 meV peak+& potential and different lauice 
periods. The origin of the conductivity has teen shilled 
for clarity. 

Figure 4. Conductivity for a smooth potential with 
IO meV pak-peak potential and a lattice period of 
100 nm for different temperatures. 

4. Antidot lattice 

Band effects are most apparent in the range V,adl, e E e V,=.  We therefore also consider 
a hard-wall antidot potential 121, where all energies are in this range. Figure 5 shows the 
conductivity for an antidot lattice with the dot radius 0.25 times the lattice period. Note 
that the mean conductivity is smaller than with a smooth potential. 
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Flgure 5. Conductivity for an antidot lattice with antidot radius 
Ro = 0.25a. Shown are che prediction of equation (IS), (suaighl 

20 line); and the quantum result with Im(&) 2 0. a = 200 nm. The inset 
shows the form of Lhe potential. 
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We now show how the average conductivity of the antidot lattice can be understood. 
The results show an initial, roughly linear portion for low energies, and a slower increase in 
the conductivity for higher energies. In the remainder of this section, we form an estimate 
of the slope for low energies from a simple path-integral picture, and argue qualitatively 
why the conductivity rises less rapidly at higher energies. 

We have shown in a previous paper [19] how the the formula for the conductivity 
(equation (1 )) can be written as an integral over k,  of the group velocity, 
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Figure 6. Band srmclure of an antidol lattice calculated from the eigenvalues of the uansfer 
matrix [I91 for ( a )  0 meV c E F  c 5 meV and (b )  5 meV c EF c 10 meV with Roja = 0.25 
and 4 = 200 nm. The real part of k, is shown for all modes with I log(lkla1) 1 e 1. 

(The single group velocity is left after one group velocity has cancelled with a one- 
dimensional density of states.) Descriptions of electron transport in terms of classical paths 
have been used to describe transport in junctions [2426] and to describe fluctuations in the 
conductivity due to quantum-mechanical interference in cavities [27-291 and we now show 
how the average group velocity can be found in terms of classical paths. 

Let us take a single value of k,, and form the S matrix for a single unit cell of the 
potential, with periodic boundary conditions in the y direction: 

where Y,, fight on right etc represent the complete set of waves travelling in the directions 
indicated. To estimate the conductivity, we need to find the eigenvalues of the corresponding 
transfer matrix T such that 

The simplest situation, which suffices to form an estimate for low energies, is to assume 
that there is just a single propagating mode, and that we can neglect interactions with states 
almost iocalized in one cell, and other propagating modes. The band structure in figure 6 
confirms that there is little interaction between propagating modes for low energies, but 
shows strong interactions between modes at higher energies. 
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The S matrix for a single mode has the general form 

where t, r, and 6 can be chosen to be real. because of the unitarity condition SSt = 1, 
and the symmetry of the unit cell which allows us to choose the phases of the two diagonal 
elements to be equal without loss of generality. We obtain an estimate of the parameters of 
this S matrix by considering all the classical paths starting on face A. and ending on either 
face A or B in the perpendicular direction we impose periodic boundary conditions with 
paths crossing the boundary being assigned an extra phase exp(iky). The wave function 
leaving the cell is approximated by 

where )path is the length of the path, k is the wavenumber at the given energy, and @ 
includes the contribution to the phase from the Maslov indices [30] and from the phase 
associated with ky. A more formal estimate of the S matrix along the lies of the formalism 
described by Jalabert etal [27] would consider the paths weighted by the wavefunction of the 
mode considered. A simple average of all paths has however been successful in describing 
fluctuations in cavities [27], and we use it here for simplicity. For higher Fermi energies, 
where there are many different modes to consider, the approximation of considering a single 
mode in the S matrix is inappropriate anyway. 

If fAB is the fraction of paths which start on face A and leave by face B, and 
fAA = 1 - fAB the fraction of paths which leave by face A, then estimates for r and 
t are 

(r2) = 1 - (t’) = fa. 

Since the classical paths are independent of the Fermi energy, 

In order to determine the average properties of the band structure, we do not need the 
absolute value of the phase 4, but only (&$/as). The appropriate estimate is 

(a$/as) = ( I )  ak/aE (11) 

where f = (I@,). The average over paths is taken over both reflected and transmitted paths, 
which gives the correct answer in the limit of zero, or total reflection. The estimate is not 
quite trivially obvious because the phase of the reflected and transmitted waves, which one 
might think to be independent, are constmined by the fact that S must be unitary for the 
flux to be conserved for any combination of input waves. 

Given the S matrix for one unit cell, we now deduce the band structure. Rearranging, 
we find 
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which has eigenvalues 

1 = exp(ik,) = cos+/! & d m  
so that we have an estimate for the group velocity, 

where fo is the average path length with no antidots present. The conductivity is then 
propoltional to the number of open modes, multiplied by the average group velocity. The 
number of propagating modes is approximately the number of open modes in one of the 
constrictions between the antidots, which is proportional to a. so we recover the simple 
result that the conductivity is proportional to the energy. 

Table 1. Factors reducing group velocity in anlidot lattice. The dot radius is given s a fraction 
of the lattice period. All other figures are relative to lhe empty lauice. f- is the fraction of 
energies in a band, rather than a band gap; fnroYp is the reduction in group velocity within one 
band because of the opening of band gaps; and (ug) is the average mooup velocity including the 
effect of the increased path length, and the probabilily a given energy iS in a band gap. 
~ 

~ o t d i u s  Path length (1') f b d  fvonp (vg) rtco 
0.15 1.33 0.80 0.70 0.78 0.41 0.28 
0.25 1.61 0.72 0.65 0.73 0.30 0.14 
0.35 205 0.65 0.60 0.68 0.20 0.06 

We have performed his estimate numerically for the shapes described, with the results 
shown in table 1, and in figure 5. The conductivity Is reduced relative to a system with a flat 
potential by a number of effects: reflection introduces band gaps, reducing the probability 
that a given mode is conducting by a factor fband, and reducing the group velocity within 
a band by a factor fgmup; the average path length between cells is increased because of 
paths which are scattered several times by the antidots within a unit cell,reducing the group 
velocity by a factor (IO) / ( I ) ,  and the number of modes which can propagate with high 
probability though the narrow constrictions is reduced by a factor 1 - 2 R ~ / a .  Our estimate 
for U is then ' 

where uo is the conductivity with no antidots present. The results show that this extremely 
simple estimate provides a reasonable estimate for the conductivity. For higher energies the 
conductivity increases less rapidly than this estimate would suggest because the independent 
mode assumption breaks down. 

5. Summary 

We have presented results for the conductivity of lateral-surface superlattices for a fixed 
relaxation time showing the effect of realistic potentials on the band conductivity. 

For a soft potential the conductivity has a simple form with three regimes. For Fermi 
energies below the saddle point of the potential, where classically the electrons would be 
localized, the conductivity is determined by tunnelling, and we expect electron interaction 
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and localization effects to be important. For Fermi energies above the saddle point of the 
potential, but below the maximum of the potential, electrons are strongly scattered, and band 
structure effects are visible. At energies above the maximum of the potential, electrons are 
both classically and quantum mechanically only weakly scattered, little structure is visible 
in the conductivity, and the conductivity is close to the value with no periodic potential. 

For a hard-wall potential, where. the Fermi energy is always below the maximum of the 
potential, the conductivity is strongly reduced below the value with no superlattice potential. 
This reduction in conductivity is explained by a simple picture for the parameters of the 
band structure in terms of paths within a single unit cell. 

R B S Oakeshott and A MacKinnon 
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